If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x=x^2+196
We move all terms to the left:
56x-(x^2+196)=0
We get rid of parentheses
-x^2+56x-196=0
We add all the numbers together, and all the variables
-1x^2+56x-196=0
a = -1; b = 56; c = -196;
Δ = b2-4ac
Δ = 562-4·(-1)·(-196)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-28\sqrt{3}}{2*-1}=\frac{-56-28\sqrt{3}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+28\sqrt{3}}{2*-1}=\frac{-56+28\sqrt{3}}{-2} $
| X-0.1x=0.139 | | (5x+16)+(6x+5)+(7x-3)=360 | | 114-a=80 | | (x^2)+(3x/20)=90 | | -(7-4x)=9+2 | | 1x-(-3)=8 | | 16=7/12x | | |6x-2|=20 | | 10x-25=3x+38 | | 7x+13=12x-12 | | q+-862=45 | | -8(6+5k)=3k-5 | | (4m+9)-3(2m-5)=0 | | 2(4b-3)-8=4+2b | | p-346=43 | | 3x+5-5x=29 | | 3(y−1)+y=1 | | 4x+30=-2x+30 | | 5(x+2)-4(x-3)=23 | | 19m÷20=0.95 | | 30=j/3+25 | | 70=10p+130 | | 5x-2(2+4x)=6x-5 | | -2(1-7y)-8=5y+34 | | 41(x+1)=9 | | 5(x)=3x+8P(x)=x+2 | | X=12=3x+30 | | B-10+c=180 | | 12x-2=7x+12 | | (x)=x+2 | | 1.4+1.7x=-1.3 | | 5e+7=27 |